

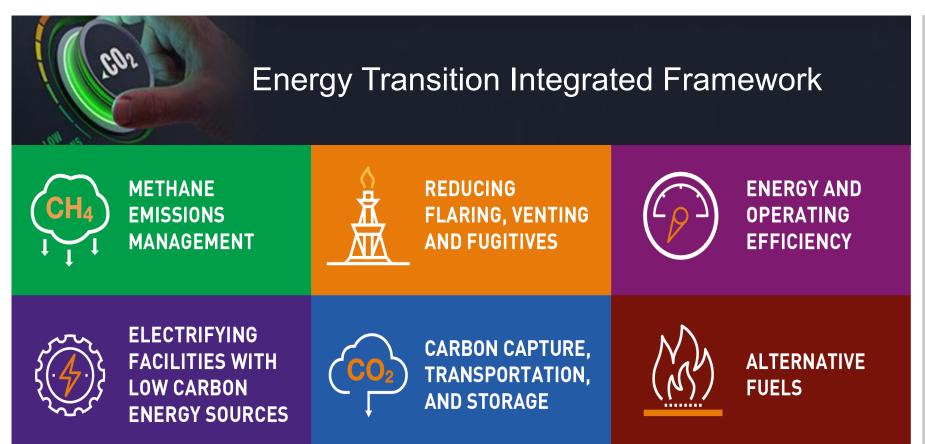
Industry aids to reduce flaring and methane

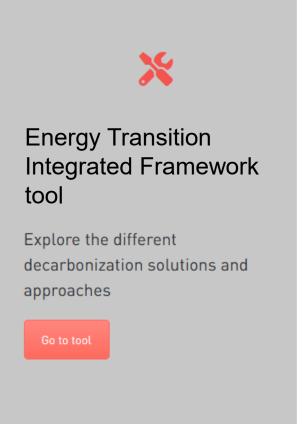
University of Brunel, London 17th SEEP Conference

Dr Faye Gerrard 29 July 2025

Agenda

- Opening remarks/Introduction
- Energy Transition Integrated Framework toolkit
- Flaring & Venting publications
- Methane emissions detection and quantification technologies filtering tool
- Final Q&A
- Closing





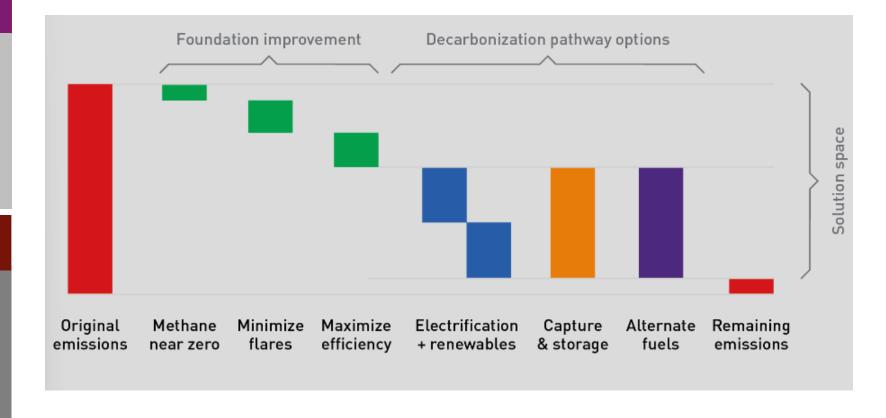
IOGP Energy Transition Integrated Framework

IOGP Energy Transition Integrated Framework

ENERGY AND OPERATING EFFICIENCY

Foundation

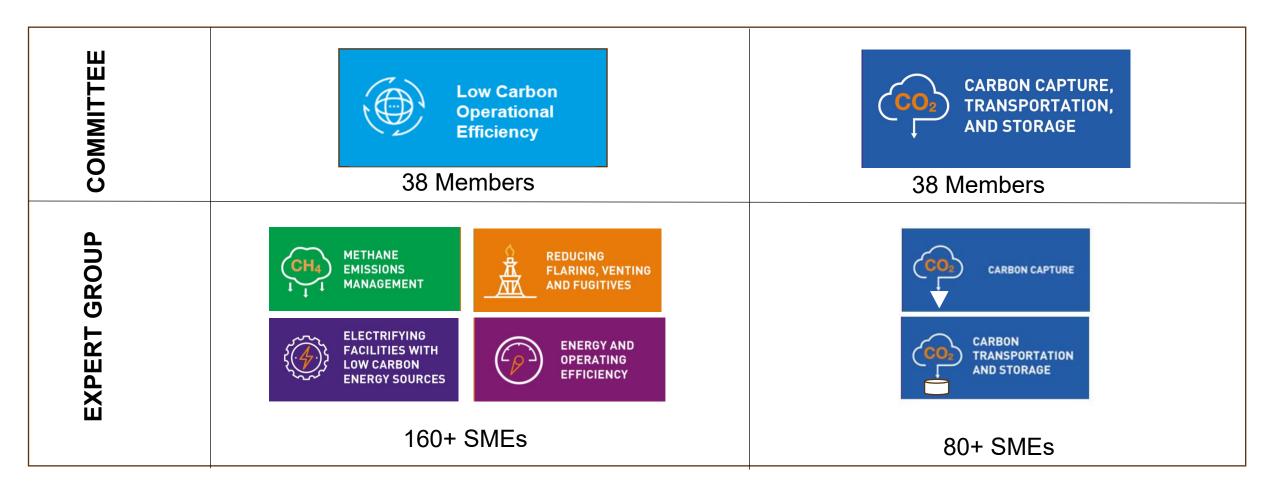
Themes support sound operation of oil and gas production in terms of methane, flaring, venting and operating efficiency performance and link to specific aspirations outlined in various global forums and international organization commitments.


CARBON CAPTURE, TRANSPORTATION, AND STORAGE

ALTERNATIVE FUELS

Decarbonization

Themes support decarbonization planning and operational performance with deep levers for reducing greenhouse gas emissions, encompassing electrification, carbon capture transportation and storage, and alternate fuels (e.g.: hydrogen)



Publications and Toolkit

Energy Transition Directorate

Welcome to the Energy Transition Integrated Framework

This comprehensive resource will guide upstream oil and gas organizations travelling the road to decarbonization, providing a holistic usage guide with different decarbonization solutions and approaches to the vast diversity of operational settings across the industry.

The Integrated Framework

GHG abatement solutions and low carbon workstreams have been integrated into an Energy Transition Integrated Framework to guide, prioritizes, and promote efficiency and mitigation efforts, aiming to reduce the carbon fo

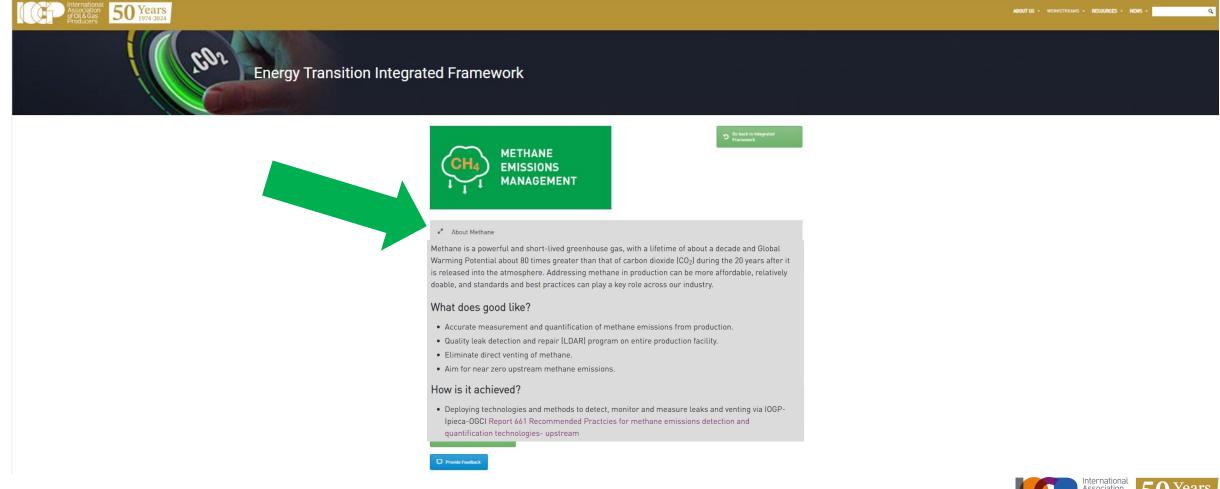
The purpose of the framework is to create one source of information to aid the implementation of the IOGP Energy Transition Toolkit.

What the framework includes

- . upstream scope 1 and 2 emissions (directly within industry control)
- scope 1 and 2 full range technical solutions
- IOGP ET Publications
- · select external resources (OGCI, Ipieca, and others).
- · best practices and best available technologies

What the framework excludes

- · economics, commercial, and decision criteria
- scope 3 emission
- pure greenfield renewable energy projects connected to the grid (integrated "behind-the-meter" renewable projects within upstream facilities are still within scope)
- offset mechanisms (including nature-based solutions)


 $\label{thm:continuous} The \ Framework\ places\ technical\ focus\ areas\ into\ two\ main\ groupings:\ Foundation\ and\ Decarbonization.$

Foundation support sound operation of oil and gas production in terms of methane, flaring and venting, and operating efficiency performance and link to specific aspirations outlined in various global forums and international organization commitments.

publications from other organizations, including OGCI and Ipieca.

BROWSE V

EARCH

IOGP MAIN WEBSIT

70

DESCRIPTION

IOGP, together with industry associations the Oil and Gas Climate Initiative (OGCI), and Ipieca, have released a recommended practices guide to help operators select and deploy methane detection and quantification technologies.

Report 661 provides criteria that operators can consider in selecting technology, guidance on technology deployment, and examples of operators' experiences with different technology combinations. This Recommended Practice provides the user

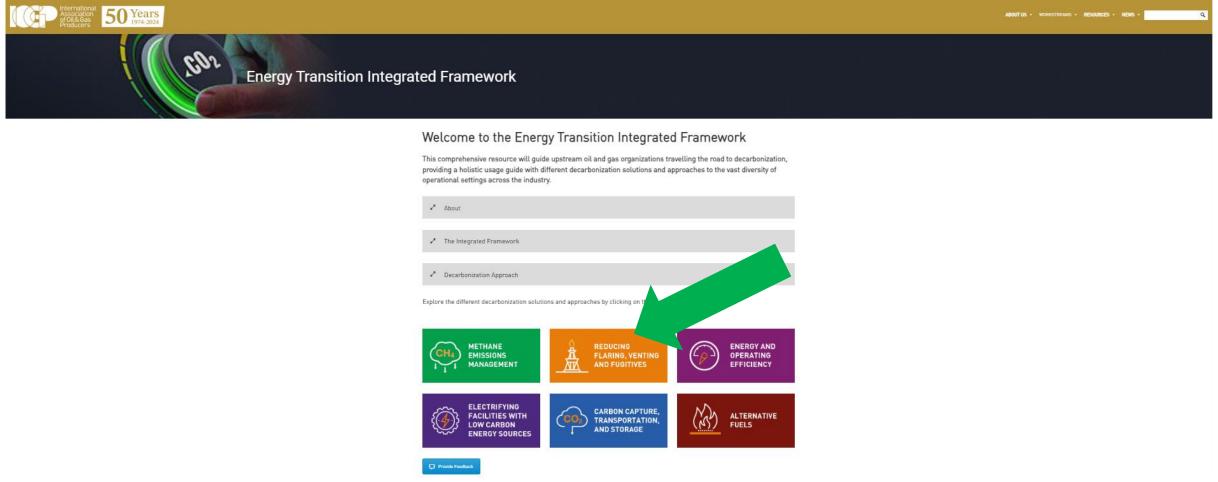
HOME / ENVIRONMENT

Recommended practices for methane emissions detection and quantification technologies – upstream

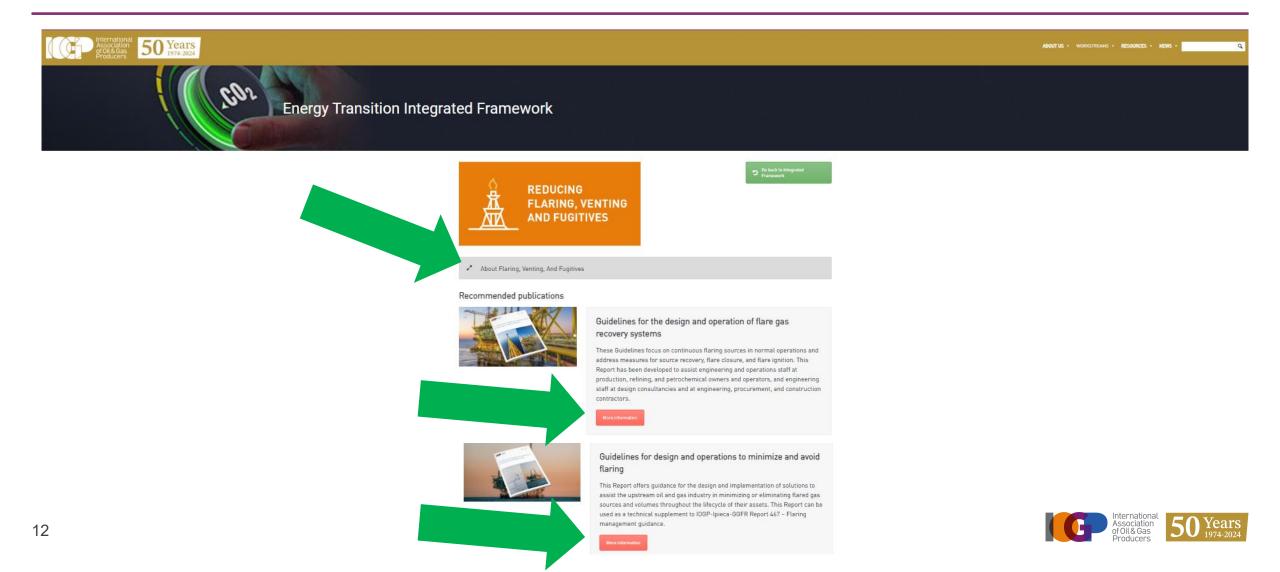
IOGP-Ipieca-OGCI Report 661

This Recommended Practice provides the user with a framework on how to implement combinations of measurement, detection, and quantification technologies at onshore and offshore assets to facilitate improved methane management and emissions reporting.

GET IT NOW


IOGP Members can also access all publications via the library in the Members Area

SKU: 66


CATEGORIES: ENERGY TRANSITION, ENVIRONMENT

BROWSE ~

EARCH

IOGP MAIN WEBSIT

70

HOME / ENERGY TRANSITION

Guidelines for the design and operation of flare gas recovery systems

the Members Area

CATEGORY: ENERGY TRANSITION

SKU: 647

DESCRIPTION

These Guidelines focus on continuous flaring sources in normal operations and address measures for source recovery, flare closure, and flare ignition. This Report has been developed to assist engineering and operations staff at production, refining, and petrochemical owners and operators, and engineering staff at design consultancies and at engineering, procurement, and construction contractors.

Energy Transition CCS Publications

Gap analysis of standards and guides for carbon capture, transport, and storage

Report 657

Seabed and overburden integrity monitoring for offshore CO₂ storage

Report 670

Risk and uncertainty assessments for geologic storage of CO₂

Report 672

Overview of lifecycle assessment for carbon capture and storage projects

Report 652

Recommended practices for measurement, monitoring, and verification plans associated with geologic storage of carbon dioxide

Report 665

Design guidance for subsea carbon capture and storage systems

Report 671

Techno-economic methodology to assess carbon capture technologies

Energy Transition LCOE Publications

Report 647

Guidelines for the design and operation of flare gas recovery systems

Report 661

Recommended practices for methane emissions detection and quantification technologies – upstream

Report 653

Recommended practices for electrification of oil and gas facilities

Electrification Projects Lessons Learned (IOGP Member only)

Update of IOGP-Ipieca Energy Efficiency Compendium

Report 673

Guidelines for design and operation to minimize/avoid flaring sources

Report 675

Guidelines for venting minimization and vent recovery systems

Technology Deployment Catalogue

Energy Efficiency Projects Lessons Learned (IOGP Member only)

Report 669 Efficient Use of energy in oil and ga

OGDC Framework

Eliminating routine flaring and reducing methane emissions

Flaring and Venting publications

Flaring and Venting Publications

Access all our Energy Transition Reports

IOGP Report 647

Guidelines for the design and operation of flare gas recovery system.

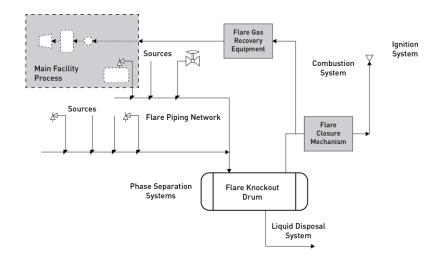
IOGP Report 673

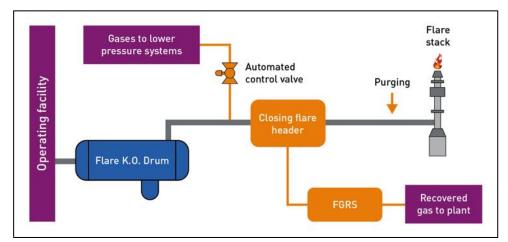
Guidelines for design and operations to minimize and avoid flaring.

IOGP Report 675

Guidelines for venting minimization and vent recovery systems

All documents can be downloaded from IOGP Bookstore - https://www.iogp.org/bookstore/




Report 647 - Flare Gas Recovery System (FGRS)

- Focus on continuous flaring sources in normal operations
- Address measures for source recovery, flare isolation and flare ignition
- Aims to assist
 - engineering and operations staff at production, refining and petrochemical
 - engineering staff at design consultancies and EPC contractors.

- FGRS capture and compression of flare gas for other uses/recycle
- Guide for initial evaluation, justification, design and operational considerations of FGRS
- Overview of FGRS Components
 - Flare isolation (e.g. liquid seal, valve closure)
 - Flare ignition (pilots, kinetic ignition)
 - Recovery systems (compressors, ejectors)

IOGP Report 673 - Minimize and avoid flaring

- Guidance for design and implementation of solutions to assist upstream oil and gas industry in minimizing or eliminating flared gas sources and volumes throughout the lifecycle of their assets
- Implementation of solutions are subjected to:
 - regulations, laws, and permits in the operating region
 - individual company requirements and guidance

- Supplements the Flaring Management Guidance (IOGP-Ipieca-GGFR Report 647)
- Industry experience
- Flare gas source reduction
- Focus on upstream

Design

- concept development phase
- engineering development phase

Operation – Commissioning and startup

Operation – Production

IOGP Report 675 - Venting minimization and vent recovery systems

- General guidance on vent minimization, VRU design considerations and HC Blanketing systems for cargo tanks on FPSOs.
- Focus on upstream
- Assist engineering and operations
- Preliminary evaluation and design considerations for vapor recovery units (VRUs)
- Overview of methane and other hydrocarbon
- Industry experiences
- HC Blanketing systems for cargo tanks on FPSOs
- VRU design
- Sources of venting
- Vent source minimization and elimination
- Vent source recovery

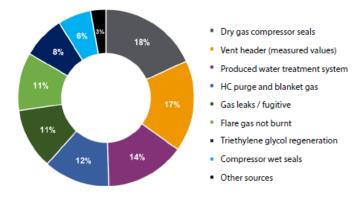


Figure 2 - Major methane emissions sources in the Norwegian offshore sector by percentage of contribution

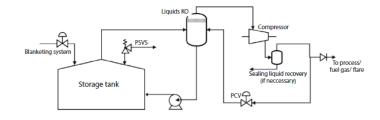


Figure 20 - Basic schematic showing VRU for a storage tank

IOGP Report 661

Recommended practices for methane emissions detection and quantification technologies

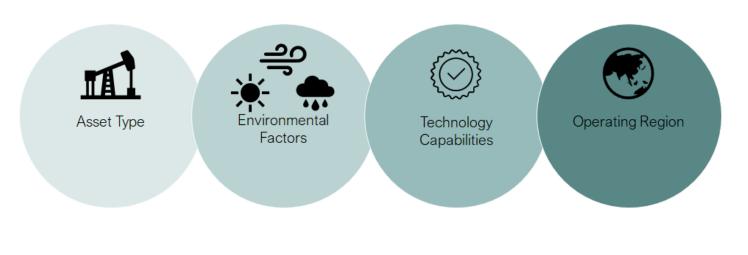
IOGP Report 661

Recommended practices for methane emissions detection and quantification technologies

Provides the user with a framework for:

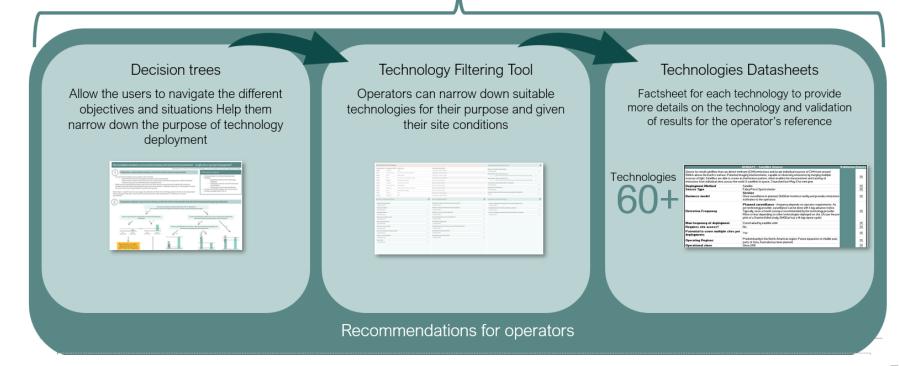
- Criteria operators can consider in selecting technology
- Guidance on technology deployment
- Measurement, detection, quantification technology combinations
- Facilitate improved methane management/emissions reporting.

 https://www.iogp.org/bookstore/product/recommendedpractices-for-methane-emissions-detection-and-quantificationtechnologies-upstream/



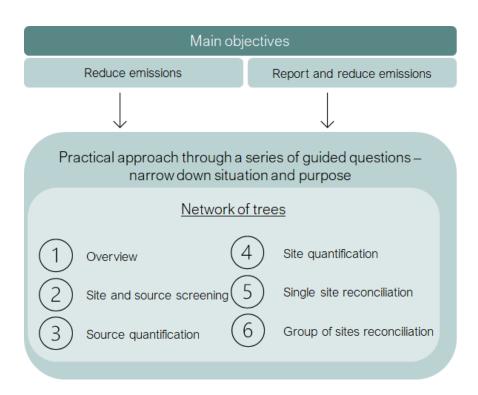
No magic answer for the detection/quantification of Methane!!

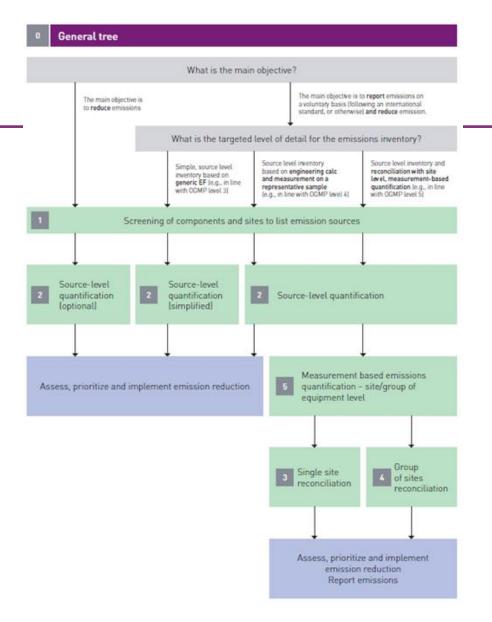
Detection and Quantification varies based on multiple factors:



Recommended Practices Document – Project Structure

- Carbon Limits Analysis
- Technology Providers
- Industry/Researcher Input
- Project Task Force
- Scientific Publications



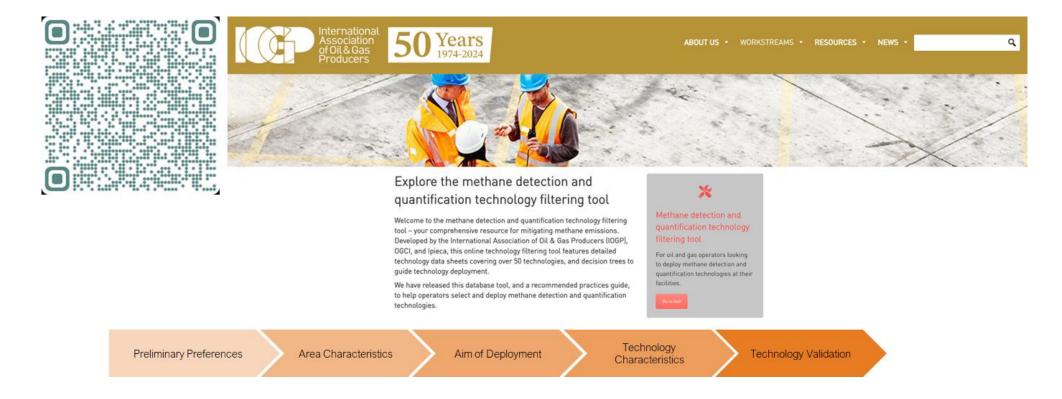


Decision Trees

How can technologies be deployed to meet the objectives?

Available in the report: https://www.iogp.org/bookstore/product/recommended-practices-for-methane-emissions-detection-and-quantification-technologies-upstream/,

Technology Datasheets


Structured compilation of data Sensor for small satellites that can detect CH, emissions and locate individual sources of CH, from around 500 km above the Earth's surface. Patented imaging interferometer, capable of observing emissions by merging multiple sources of light. Satellites can create an interference patern, which enables the measurement and tracking of emissions from individual tiese across the world 6 satellites in space 3 junched last General Information May, 6 for next year [3] Deployment Method Visual Product, Remote sensor type Sensor Classification and Type Fabry-Perot Spectrometer Rusiness model Data Product - Once surveillance in planned, GHGSat monitors facility and provides en [3] (Instrument or data to be purchased?) Periodic Monitoring Tech. Specifications Planned surveillance: frequency depends on operator requirements. As per technolog [3] Frequency - for technology deployment rearries or realistics in requestly depth to driving each regarder them. As per recommodity provider, surrellatince can be done with 1-13ay advance notice. Typically, once a morth survey in recommended by the technology provider: more or less depending on other technologies deployed on site. As per Sherwin et al. (2022) [pre-pnrt]. GHGSat has a 14-day repeat cycle. 1 image per visit. Revisit time is 14 days for a single satellite, or 1 to 7 days when considering the Sampling frequency during operation [1][5] Requires access to site? Potential to cover multiple sites per [3] deployments Operating Regions **Environmental Conditions** At Site level - Yes At equipment level - No At component level - No Detection Level [2], [3] An independent test performed stated that GHGSat can narrow down key zones of emission Kuva Systems provides a camera based, stationary, continuous monitoring system for methane (can alse be tuned for other VOC emissions). **Location Conditions** [3] Deployment Method Stationary Visual Product, Remote sensor type Sensor Classification and Type Shortwave infrared (SWR) Business model Instrument can be purchased or rented [5] (Instrument or data to be purchased?) Data Product - cloud monitoring services are offered Technology measures during daylight hours. Currently testing a system for day and nigh [5] Deployment Information Sampling frequency during operation Not specified Requires access to site? Potential to cover multiple sites per [5] [3] North America as of November 2022, deployments planned in other continents Operating Regions >5 years (founded in 2015) Detection Links to Additional information At Site level – Yes At equipment level – Yes At component level – Maybe Detection Level [3] [5] 1-10 kg/h Detection Threshold / Precision In field conditions (METEC ADED testing), lower under lab conditions Validated by fully blinded tests performed with third party (b), (d) [1], [2], [3] By METEC, ADED, Alt-FEMP approved ...

Use of the Technology Filtering Tool

Link to **Technology Filtering Tool**

Recommended Practices for flares

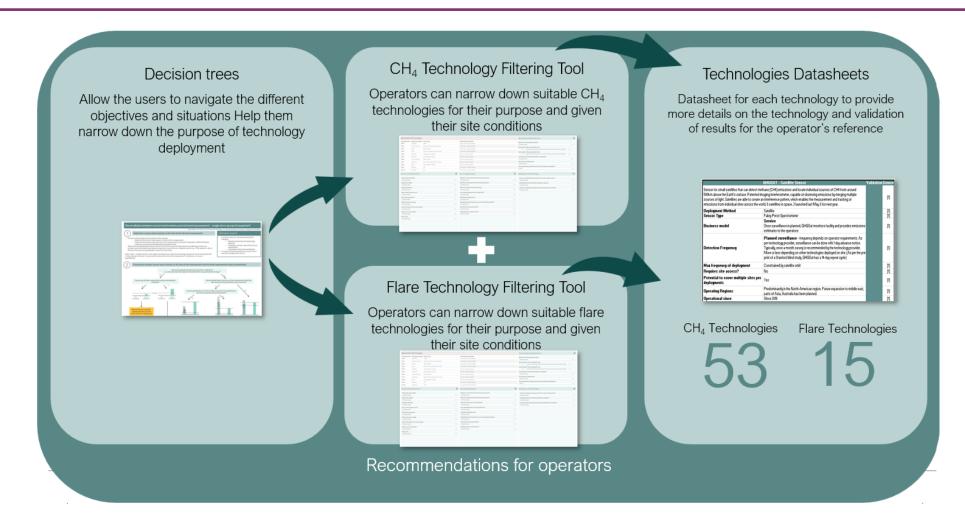
Recommended Practices for flares

Background

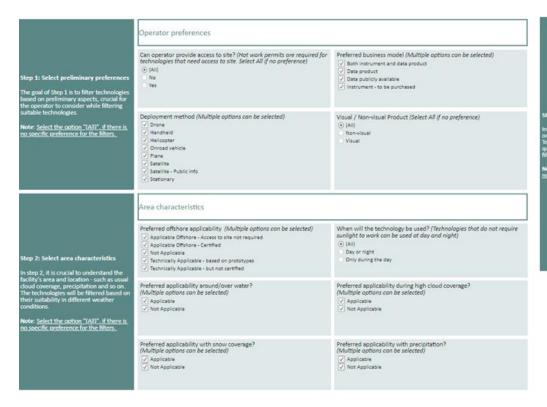
- Flaring: burning undesirable or surplus gas in an openatmosphere flame
- Flaring converts flared gases (including methane) into carbon dioxide.
- GWP of CH₄ 82.5/29.8 times greater than CO₂ over a <u>20/100</u> year period
- 139 billion m³ of gas was flared in 2022
- Motivation for initiatives such as ZRF program

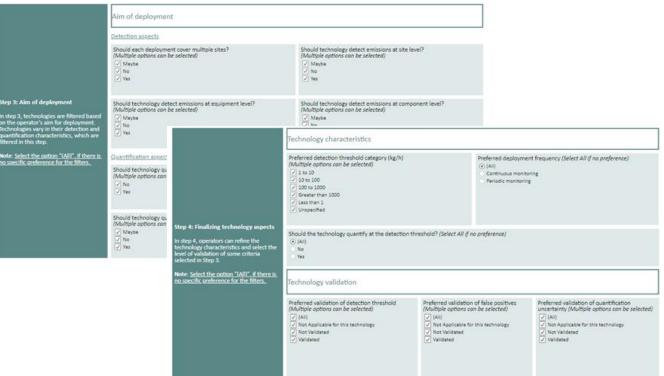
World Bank GMFR. Global Gas Flaring Data: https://www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data

- Ongoing Industry Effort
- Great to measure, but also important to remember to focus on mitigation
- Work is complementary to OGCI, IOGP and <u>Ipieca</u> RP, Methane Flaring Toolkit, World Bank ZRF Initiative



Project and report ongoing and expected to be made available later this year




Recommended Practices Document: Integration of Flare Technologies

Technology Filtering Tool Options

Technology Filtering Tool Options – Filter to narrow down further

Provider Name	Technology name		Operating regions
AddGlobe	GFM 2.0	Handheld	Europe, Canada and United States. Plans for Middle East exist
Adlares	Charm	Helicopter	Europe
ASI	PRISMA	Satellite - Pub	Worldwide
Atmosfir	D-fenceline	Stationary	North America currently. Open to selling to other regions.
Bridger	Gas Mapping Lidar (GML)	Plane	North America
Carbon Mapper - Planet	Carbon Mapper	Satellite	Northa America currently. Worldwide from 2023.
Clean Connect	Autonomous 365	Stationary	USA
DigitalGlobe	Worldview3	Satellite - Pub	Worldwide
ESA	Sentinel-2	Satellite - Pub	Worldwide
	TROPOMI	Satellite - Pub	Worldwide
GHGSat	GHGSat Constellation	Satellite	Worldwide
Heath Consultants	Detecto-Pak Infrared+	Handheld	Worldwide
	DISCOVER Advanced Mobile Leak Dete	Onroad vehicle	Worldwide
	Remote Methane Leak Detector (RMLD	Handheld	Worldwide
HETEK	HETEK Flow Sampler	Handheld	US, Canada, Europe
Kairos	LeaksSurveyor	Plane	North America, South America, and Europe
Kuva	Kuva Daylight	Stationary	North America. Deployments planned in other continents
Longpath Technologies	Longpath Laser System	Stationary	North America. Deployment in more regions in the foreseeable future
MFE Instruments	SPOT Robotic Dog	Drone	North America
Mirico	ORION	Stationary	Worldwide
NASA/USGS	Landsat-8	Satellite - Pub	Worldwide
NevadaNano	MPS Methane Gas Sensor	Stationary	North America, Europe, Middle East, Africa currently
Opgal	EyeCgas 2.0	Handheld	Worldwide
Orbital Sidekick	Hyperspectral monitoring solutions	Satellite	Worldwide
Pergam-Suisse	ALMA	Plane	Worldwide
	Laser Falcon	Plane	Worldwide
	LMm (Laser Methane mini)	Handheld	Worldwide
	LMS (Laser Methane Scanner)	Stationary	Worldwide
	SELMA Duo	Onroad vehicle	Worldwide
	SELMA Roof-Dome	Onroad vehicle	Worldwide

Q&A

Access all our Energy Transition Reports

For more information please contact:

Dr. Faye Gerard, Energy Transition and Americas Regional Director fge@iogp.org

IOGP Headquarters

City Tower, 40 Basinghall St, London EC2V 5DE, United Kingdom

T: +44 20 4570 6879

E: reception@iogp.org

IOGP Americas

T: +1 281 219 9908

E: reception-americas@iogp.org

IOGP Asia Pacific

T: +61 7 2139 9714

E: reception-asiapacific@iogp.org

IOGP Europe

T: +32 2 882 16 53

E: reception-europe@iogp.org

IOGP Middle East & Africa

T: +244 226 434 245

E: reception-mea@iogp.org

www.iogp.org